
FOOTER
info@neuralegion.comwww.neuralegion.com+44 (0) 20 8050 DAST +44 (0) 20 8050 3278 /

+1 (0) 917 905 9707

Banner

INTRODUCTION

Concepts and approaches to how software is built have evolved over the years from monolithic to a
distributed architecture based on composable application components – microservices.

Microservices are single-function chunks of an application’s business modules, often isolated within
interoperable containers. The distributed approach makes it easier for developers to update and expand
applications, resulting in an architecture comprised of reusable and more manageable pieces. While
microservices have freed software development from many constraints of monolithic architecture, this
new approach exposes applications to additional threats and vulnerabilities that need to be addressed
and remediated.

Microservices security testing

instances. The mix of new connections between microservices being continuously open throughout
the network, along with a number of APIs being exposed to the public, introduces a large number

by tracking all interactions between application endpoints to expose weaknesses in both runtime
behavior and single points of entry.

The Dynamic Application Security Testing method is the only solution able to scan all the functions of
the microservice architecture that make up an application and verify its general health and capacity
to handle production runtime without unwanted exposure to vulnerabilities.

Tech giants using microservices

Remote
Service

Managment Service
Discovery

Identity
Provider

CDN Static
Content

API
Getaway

C
L
I
E
N
T Services

Services

Services

Services

Microservices

DAST The winning approach
to microservices security

FOOTER
info@neuralegion.comwww.neuralegion.com+44 (0) 20 8050 DAST +44 (0) 20 8050 3278 /

+1 (0) 917 905 9707

FOOTER
info@neuralegion.comwww.neuralegion.com+44 (0) 20 8050 DAST +44 (0) 20 8050 3278 /

+1 (0) 917 905 9707

CONTAINERS

A container is a standard unit of software that packages
up the code and its dependencies in a wrapper that
can seamlessly move through different computing
environments.

Components that a container image consist of are:

Operating system binaries

Operating system libraries

Language runtimes

Middleware (message buses, application servers)

Databases, datastores

Developer code

Single-purpose functionality
Modular architecture achieved by splitting applications

performing only a single function of a business domain
application functionalities.

Decentralized governance and deployment

component should be interacted with, resources are

Scalability
Microservices can scale to handle increased workloads
by adding computing resources to a running host
(vertical scalability) or by adding more instances to
an existing cluster (horizontal scalability)

MICROSERVICES

Microservices architecture is a variant of service-oriented architecture (SOA) for developing large
applications consisting of services that are divided into chunks by the business domain. Microservices
are more resilient to service disruption thanks to decentralized deployment and decomposition of
application functionalities.

Development and runtime principles

Container
Images

Container Platform

Container Hosts

Elasticity
The ability for the application component to expand
and return to its original state if required by an internal
system event or other service runtime criteria

Fault tolerance
The ability for each microservice to tolerate and handle
exceptions or crashes without causing any disruption
to the application

Consistent orchestration
Host images and containers are tightly orchestrated
and follow the development cycle while continuously

Consistent orchestration
Host images and containers are tightly orchestrated
and follow the development cycle while continuously

FOOTER
info@neuralegion.comwww.neuralegion.com+44 (0) 20 8050 DAST +44 (0) 20 8050 3278 /

+1 (0) 917 905 9707

FOOTER
info@neuralegion.comwww.neuralegion.com+44 (0) 20 8050 DAST +44 (0) 20 8050 3278 /

+1 (0) 917 905 9707

Microservices security challenges

Defensive practices

Defense-in-depth
After splitting applications to microservices, it is essential to reduce host and container footprint while
protecting all components of the architecture threat model. The defense-in-depth approach limits the
impact of damage that could be done if a vulnerability in a microservice is exploited.

Container
Enable user namespaces

Harden kernel settings

Bind services to local or private network interfaces

Deploy immutable containers

Host
Run read-only images

Limit SSH access with public key authentication and isolate over VPN

Platform
Use role-based authorization and user demarcation

Use centralized multi-factor authentication

Isolate environments to development, staging, and production

Load Stress Resiliency

Can the application handle

without disruptions or
misbehavior?

Does the application

unintended amounts of
introduced workload?

Is the application resilient
to failures and crashes of
architecture components?

Segmentation

and isolation

The complexity

of multi-cloud

deployments

Identity

management and

access control

Data and

message

integrity

The rapid rate of

change, deprecation

cycle

FOOTER
info@neuralegion.comwww.neuralegion.com+44 (0) 20 8050 DAST +44 (0) 20 8050 3278 /

+1 (0) 917 905 9707

FOOTER
info@neuralegion.comwww.neuralegion.com+44 (0) 20 8050 DAST +44 (0) 20 8050 3278 /

+1 (0) 917 905 9707

DAST - A winning approach to microservices security

Microservices perform a wide range of functions by passing messages within the environment to initiate
requests and form responses. Applications interact with and connect to many services, gateways, or

only if they can provide full coverage and expose vulnerabilities throughout complex dynamics and
runtime behavior of interactions between microservices. Verifying an application’s runtime health requires
Dynamic Application Security Testing which will pinpoint weaknesses end-to-end, without leaving any

Common microservice functions

Establishing and maintaining
communication channels

Transferring data over the network to
another service

Handling system and service crashes

Pulling new code through CI/CD
pipeline

Logging and reporting events

H
TT

P
Cl

ie
nt

Ga
te

w
ay

s

Ex
tr

en
al

Se

rv
ic

e

 External
Datastore

Resources

Respositories

Domain

Service
Layer

Data Mappers / ORM

Protocol

Domain

External

Persistence

Network
Boundry

Logical
Boundry

DAST ensures end-to-end security testing with high scenario coverage to
identify and expose vulnerabilities of a running application

SAST DAST

Scan with end-to-end coverage

application to production

Detect and handle microservice
architecture scan barriers

Track, record and scan application

SAST vs. DAST

FOOTER
info@neuralegion.comwww.neuralegion.com+44 (0) 20 8050 DAST +44 (0) 20 8050 3278 /

+1 (0) 917 905 9707

FOOTER
info@neuralegion.comwww.neuralegion.com+44 (0) 20 8050 DAST +44 (0) 20 8050 3278 /

+1 (0) 917 905 9707

Advantages of end-to-end DAST

its goals. The main purpose of end-to-end testing is to know if the composable parts of the microservice
architecture as a whole meet business objectives while the application is in its running state. In a DAST
end-to-end scan, the system is treated as a black box while probing and interacting with public entry
points, APIs, and with as much of the running system as possible.

As microservice architecture evolves over time, along-side the rapid rate of changes and the application
life cycle, end-to-end testing allows adaptation and learning about applications’ dynamics. The ability to
detect and expose vulnerabilities regardless of the complex ever-going architectural changes provides

Application testing pyramid
The test pyramid describes methods of
application testing and shows relations between
a relative number of tests that should be done
for each testing method.

At the top of the pyramid is Exploratory testing,
used for exploring and learning about the system
through interactions, exposing it in ways that
were previously considered out of scope.

Exploratory

End-to-end

Component

Integration

Unit

Integration tests Units

End-to-end tests

Verify that co-dependent and composable parts
of the microservice architecture that make a
running application meet business objectives.

Component tests

Limit the scope of tested parts of the
architecture, manipulating the system through
internal code interfaces.

Verify communication paths and interactions
between components to detect interface defects.

Determine if the smallest chunks of application
code behave as expected.

End-to-end Dynamic Application Security Testing bridges gaps between moving
parts of a microservice architecture by verifying the correctness and behavior

of each function of a running application. This ensures that the services are not
exposed to vulnerabilities in runtime and therefore minimizes the likelihood of

negative outcomes when the application is published to production.

FOOTER
info@neuralegion.comwww.neuralegion.com+44 (0) 20 8050 DAST +44 (0) 20 8050 3278 /

+1 (0) 917 905 9707

FOOTER
info@neuralegion.comwww.neuralegion.com+44 (0) 20 8050 DAST +44 (0) 20 8050 3278 /

+1 (0) 917 905 9707

CONCLUSION

The transition from the traditional monolithic architecture to microservices raises many questions,
including security implications introduced through increased exposure of entry points and communication
channels that are now involved in application runtime.

Granular control over application components is both a good and a bad thing. While decentralization
and composability allow faster development and delivery, new issues arise directly from the increasing
complexity.

wide since the application has dispersed and exposed its functional parts all over the infrastructure.
Although composable and deployed with a single purpose, microservices still depend on other components
that are constantly interacting with each other over the network to deliver the business objectives of
a running application.

When it comes to application security testing, the scanning of source code for vulnerabilities achieves only

built on microservices are ready to face the public and be deployed to production without unwanted

Application Security Testing that can track and handle complex growth and dynamics of a decentralized
microservice architecture mesh.

FOOTER
info@neuralegion.comwww.neuralegion.com+44 (0) 20 8050 DAST +44 (0) 20 8050 3278 /

+1 (0) 917 905 9707

