


2Data Governance Best Practices for Software Delivery

Key Governance Regulations 

Common Requirements Across Regulations

Common Control Objectives

Achieving Strong Governance For Software Delivery

Governance in the Age of AI

How a Change Advisory Board Can Help

Conclusion

4

5

6

8

11

13

14

Contents



3Data Governance Best Practices for Software Delivery

In the rapidly evolving landscape of modern software development, governance has 
emerged as a crucial practice for successful software delivery. Far from being a mere set of 
restrictive rules, effective governance provides the framework that enables organizations 
to balance innovation with control, ensuring consistent quality while managing risks in an 
increasingly complex digital environment.

Software delivery governance encompasses comprehensive frameworks, policies, and 
controls that guide how organizations develop, test, and deploy software. This structured 
approach ensures that development efforts align with business objectives while maintaining 
necessary controls for security, quality, and compliance. By establishing clear guidelines 
and automated controls, governance enables teams to move quickly while staying within 
appropriate boundaries.

The strategic value of governance cannot be overstated in today’s competitive landscape. 
It provides organizations with the ability to standardize practices across development 
teams, protect valuable assets and data, and enable rapid, reliable software delivery. This 
standardization becomes increasingly crucial as organizations scale their development 
efforts and face growing complexity in the technologies they employ.

In an era where security breaches and compliance violations can result in significant financial 
and reputational damage, governance provides mechanisms for identifying and mitigating 
risks throughout the software delivery lifecycle. Through systematic approaches to risk 
assessment and mitigation, organizations can protect themselves while maintaining their 
ability to innovate.

Teams that practice strong governance reap numerous benefits, including reduced risks 
and costs, improved quality and reliability, faster time to market, and increased stakeholder 
confidence. These benefits compound over time as governance practices mature and 
become embedded in organizational culture.

Looking toward the future, governance must continue to adapt to emerging technologies 
and methodologies. As cloud-native architectures, artificial intelligence, and increased 
automation become more prevalent, governance frameworks must evolve to address new 
challenges while enabling organizations to leverage new opportunities.



4Data Governance Best Practices for Software Delivery

Key Governance Regulations
As you can see, organizations must navigate a complex web of regulatory requirements while 
maintaining efficient software delivery practices. Understanding these regulations and their 
common threads is crucial for implementing effective governance frameworks that ensure 
compliance without hindering innovation. Let’s get an overview of the major regulations 
organizations must comply with.

•	 The General Data Protection Regulation (GDPR) stands as one of the most comprehensive 
and influential regulations globally. Introduced by the European Union, GDPR has set 
new standards for data protection and privacy, requiring organizations to implement 
strict controls over personal data processing, storage, and transfer. Its influence extends 
far beyond European borders, effectively establishing a global benchmark for privacy 
protection.

•	 The Health Insurance Portability and Accountability Act (HIPAA) governs healthcare 
data protection in the United States. It mandates stringent controls over patient health 
information, requiring healthcare organizations and their technology partners to implement 
robust security measures, maintain detailed audit trails, and carefully manage access to 
sensitive health data.

•	 The Sarbanes-Oxley Act (SOX) focuses on financial reporting accuracy and corporate 
governance. While primarily targeting financial systems, its requirements for control and 
transparency have broad implications for software delivery, particularly in systems that 
handle or influence financial data. SOX compliance demands robust change management 
processes and comprehensive audit capabilities.

•	 The Payment Card Industry Data Security Standard (PCI DSS) provides specific 
requirements for protecting payment card data. This global standard affects any 
organization handling credit card information, requiring particular attention to encryption, 
security testing, and access control.



5Data Governance Best Practices for Software Delivery

Common Requirements 
Across Regulations
Modern software delivery regulations, whether from GDPR, SOX, HIPAA, or industry-specific 
frameworks, share fundamental requirements despite their different origins and focuses. These 
common threads reflect universal principles of security, accountability, and risk management 
that organizations must address in their software delivery practices.

Across regulatory frameworks, one consistent requirement stands out: the need for 
comprehensive documentation of the software delivery lifecycle. Organizations must maintain 
detailed records of all system changes, including who made them, when they were made, and 
why they were necessary. This documentation must demonstrate clear links between business 
requirements, technical implementations, and deployed changes. Version control systems must 
capture not only code changes but also configuration modifications, deployment procedures, 
and testing results.

Every major regulation emphasizes the importance of robust access management. 
Organizations must implement role-based access control (RBAC) systems that restrict code 
access, deployment capabilities, and production environment modifications to authorized 
personnel only. Multi-factor authentication becomes mandatory for sensitive operations, while 
periodic access reviews ensure that permissions remain current and appropriate. Systems must 
maintain detailed logs of all access attempts, successful or otherwise.

Regulations universally mandate the protection of sensitive data throughout the software 
delivery pipeline. This includes encryption requirements for data both in transit and at rest, 
secure key management practices, and data minimization principles. Organizations must 
implement mechanisms to identify and protect personally identifiable information (PII) and 
other sensitive data types, ensuring they are handled according to applicable privacy laws and 
industry standards.



6Data Governance Best Practices for Software Delivery

Common Control Objectives
In the realm of software governance, control objectives serve as fundamental guidelines that 
help organizations maintain oversight and ensure quality throughout their software delivery 
lifecycle. These objectives form the backbone of effective governance frameworks, providing 
structure and direction for development teams while protecting organizational interests. Let’s 
take a closer look at some of the key areas organizations need to focus on in order to execute 
a comprehensive governance framework.

•	 Access control stands as a primary objective in software governance, ensuring that only 
authorized individuals can access specific systems, code repositories, and deployment 
environments. This fundamental control extends beyond simple username and password 
protection, encompassing role-based access control, multi-factor authentication, and 
regular access reviews to maintain security integrity.

•	 Quality assurance emerges as a vital control objective, establishing standards and 
processes to maintain consistent software quality. This encompasses code review 
requirements, testing protocols, and performance benchmarks that must be met before 
software can progress through development stages to production deployment.

•	 Compliance and regulatory adherence represent increasingly important control objectives, 
ensuring that software development and deployment practices meet relevant regulatory 
requirements. This includes maintaining proper documentation, implementing required 
security measures, and ensuring appropriate data handling practices.

•	 Documentation control serves as a fundamental objective, ensuring that all aspects of 
software development and deployment are properly documented. This includes technical 
specifications, user manuals, deployment procedures, and incident response plans, 
providing essential reference materials for current operations and future maintenance.

•	 Performance monitoring and optimization represent ongoing control objectives, 
ensuring that software systems meet performance requirements and operate efficiently. 
This includes establishing performance benchmarks, monitoring system metrics, and 
implementing optimization processes when needed.

•	 Incident management emerges as a crucial objective, establishing processes for 
identifying, responding to, and resolving software-related incidents. This includes defining 
escalation procedures, maintaining incident logs, and conducting post-incident reviews to 
prevent future occurrences.



7Data Governance Best Practices for Software Delivery

•	 Vendor management serves as an important control objective when third-party software 
or services are involved. This includes evaluating vendor security practices, ensuring 
service level agreements are met, and maintaining appropriate contractual controls.

•	 Business continuity represents a strategic control objective, ensuring that software 
systems can continue operating during disruptions. This includes disaster recovery 
planning, backup procedures, and failover testing to maintain system availability.

•	 Risk management stands as an overarching control objective, focusing on identifying, 
assessing, and mitigating risks throughout the software lifecycle. This includes regular risk 
assessments, implementing appropriate controls, and maintaining risk registers.

These control objectives work together to create a comprehensive governance framework 
that enables organizations to maintain control while fostering innovation and efficiency. By 
implementing these objectives thoughtfully and systematically, organizations can build robust 
software governance practices that protect their interests while enabling successful software 
delivery.

The effectiveness of these control objectives relies heavily on their proper implementation 
and regular review. Organizations must continually assess and adjust their control objectives 
to ensure they remain relevant and effective in an evolving technological landscape while 
supporting business objectives and maintaining necessary protections.

As software systems continue to grow in complexity and importance, these control objectives 
become increasingly crucial for maintaining effective governance. They provide the structure 
needed to ensure quality, security, and compliance while enabling organizations to deliver 
software efficiently and reliably.



8Data Governance Best Practices for Software Delivery

Achieving Strong Governance 
For Software Delivery
Objective 1: Maintain Separation of Duties Between Application 
Code and Production

Instituting separation of duties throughout the software development lifecycle is an impactful 
security risk mitigation realized through role-based access controls (RBAC). It essentially 
involves clearly defining and limiting what duties or functions a given stakeholder can execute. 
For example, individuals or development teams responsible for writing code shouldn’t be the 
ones to deploy it and manage it in a live production environment. Separation of duties would 
prevent any accidental or malicious code changes from being introduced into production 
without proper review and oversight.



9Data Governance Best Practices for Software Delivery

Objective 2: Prevent Untested Code From Reaching Production 

Ideally, all code should undergo thorough functional and security testing prior to being 
deployed in production, a policy which greatly reduces the risks of bugs or security 
vulnerabilities finding their way to live applications.

Unit testing is frequently mandated and should be enforced via governance. Any code 
containing business logic and domain objects should undergo unit testing. These are typically 
classes in the codebase referencing actions and entities a user can perform and manage 
through the system. Ideally, they do not depend on third-party libraries or external frameworks 
and therefore they are easier to test at the unit level. 

Objective 3: Prevent Vulnerable Code From Reaching Production 

Application security testing (AST) can be mandated as well and enforced in the pipeline, 
ensuring that all code be scanned for the purpose of uncovering known vulnerabilities, thus 
strengthening the application’s security posture. Two types of security scans that should be 
run on code are SAST (Static Application Security Testing) and SCA (Software Composition 
Analysis). SAST is applied early in the SLDC, prior to code being compiled. 

SAST scanners should be run on code on a regular basis, such as during periodic builds, at 
each code check-in, or during a code release. SCA tools are used to identify open source 
software within a code base, for the purpose of evaluating security, license compliance and 
overall code quality. 

A recommended approach to ensuring that vulnerable code isn’t promoted to the next 
development phase is to create security gates that test the code and policies that fail a pipeline 
if code is found to contain a high level of severity.

Objective 4: Enforce Granular Access Controls Throughout The 
SDLC

Role-based Access Control (as mentioned above) is essential for enforcing clear separation of 
duties among software development stakeholders, and is key to the overall secure operation 
of the underlying development platform. While static entitlements are a good start, a granular 
RBAC is a superior approach to access control that enables tailored access control and 
governance that meets diverse organizational needs. 



10Data Governance Best Practices for Software Delivery

Granular access controls would enforce permissions based on specific applications, services, 
environments, triggers (conditions to execute pipelines or workflows), individual pipelines and 
deployments. For example, you might want to let a DevOps team manage deployment pipelines 
(create/update/delete/read) but only allow developers to deploy and view them. In addition, 
you might want to grant read-only access to execs so they can get visibility across your 
deployment pipelines.

Objective 5: Ensure Rollback And Recovery Plans Are In Place

A software rollback is a safety net in the world of software development. As new features 
and improvements get introduced into an application, a rollback serves as a critical recovery 
strategy. It allows developers to revert to an earlier, stable version if a new release creates 
unexpected problems.



11Data Governance Best Practices for Software Delivery

AICPA Trust Services Criteria

CC4.1 - COSO Principle 16: The entity selects, develops, and performs ongoing and/
or separate evaluations to ascertain whether the components of internal control are 
present and functioning. 

CC7.2 - The entity monitors system components and the operation of those 
components for anomalies that are indicative of malicious acts, natural disasters, and 
errors affecting the entity’s ability to meet its objectives; anomalies are analyzed to 
determine whether they represent security events. 

ISO 27001:2013 

A12.4.1 - Event logs recording user activities, exceptions, faults and information 
security events should be produced, kept and regularly reviewed.

A12.4.3 - System administrator and system operator activities should be logged and 
the logs protected and regularly reviewed.

ISO 27001:2022 

8.15 - Logs that record activities, exceptions, faults and other relevant events should 
be produced, protected, stored and analyzed.

Objective 6: Maintain Detailed Audit Trails

Establishing strong governance also requires audit trails that capture events in detail. The 
audit trail shows the date and time of the event, the user who made the change, actions taken, 
resources affected, corresponding organization, project, or module, and an event summary that 
shows the change. 

Audit trails are highly useful for reviewing new user creation dates to support external audit 
requests, as well as to validate when new releases are deployed to production to remediate 
pending library vulnerabilities. Below are some related compliance standards and frameworks 
that state the requirement of logs and audit trails:



12Data Governance Best Practices for Software Delivery

Governance in the Age of AI
As you can see, organizations must build their CI/CD governance on a solid foundation of 
well-defined policies. These should encompass not only traditional software development 
concerns but also the unique challenges presented by AI systems. Development teams need 
clear guidance on compliance requirements, from data privacy regulations to industry-specific 
standards. Security protocols must be explicitly outlined, covering everything from code 
access controls to deployment safeguards. Perhaps most critically, teams require detailed 
ethical guidelines for AI development, ensuring their systems remain fair, transparent, and 
accountable.

These systems serve as vigilant guardians of the pipeline, continuously monitoring for 
potential issues. Static code analysis tools scan for security vulnerabilities, while specialized AI 
auditing systems examine models for bias and unexpected behaviors. Performance monitoring 
tools track system behavior in production, providing early warning of potential issues. This 
automated oversight ensures consistent enforcement of standards while freeing human 
reviewers to focus on more nuanced aspects of governance.

Every modification, whether to traditional code or AI models, must be tracked with precision. 
This includes capturing not only what changed but why it changed, who approved it, and what 
testing validated the change. Advanced version control systems should maintain detailed 
histories of model training data, parameters, and performance metrics. Code review processes 
must be enhanced to account for AI-specific concerns, such as model drift and data quality.

Effective CI/CD pipeline governance in the AI era requires a delicate balance between rigorous 
control and development agility. By establishing clear policies, leveraging automation, and 
maintaining robust change management processes, organizations can build trustworthy, 
efficient pipelines that support innovation while managing risk.

Ironically, AI can also be used to enforce policies. AI systems excel at enforcing complex policy 
requirements consistently across large organizations. These systems can automatically check 
code commits against security policies, ensure proper access controls are maintained, and 
verify that all necessary approvals are obtained before changes are implemented. Machine 
learning models can understand the context of changes, making intelligent decisions about 
whether modifications comply with governance requirements rather than simply applying rigid 
rules.



13Data Governance Best Practices for Software Delivery

Perhaps the most valuable aspect of AI in governance is its ability to learn and adapt over time. 
AI systems can analyze the effectiveness of governance policies, identifying areas where rules 
may be too strict or too lenient based on real-world outcomes. These systems can recommend 
policy adjustments to optimize the balance between security, compliance, and development 
velocity. Through continuous learning, AI governance systems become more effective at 
distinguishing between genuine risks and false positives, reducing the burden on development 
teams while maintaining robust protection.

The integration of AI into software delivery governance represents a fundamental shift in how 
organizations approach compliance and risk management. As AI systems continue to evolve, 
they will enable even more sophisticated approaches to governance, helping organizations 
maintain high standards of security and compliance while accelerating innovation. The key 
to success lies in thoughtfully implementing these AI capabilities while maintaining human 
oversight of critical governance decisions.



14Data Governance Best Practices for Software Delivery

How a Change Advisory Board 
Can Help
A change advisory board (CAB) plays a pivotal role in modern software governance, serving 
as a critical control point for managing and overseeing changes to software systems and 
infrastructure. This governing body brings together key stakeholders from various departments 
to evaluate, authorize, and monitor changes, ensuring they align with organizational objectives 
while minimizing potential risks.

The primary purpose of a CAB extends beyond simple change approval. It serves as a strategic 
forum where proposed changes are thoroughly evaluated from multiple perspectives, including 
technical feasibility, business impact, security implications, and resource requirements. This 
comprehensive evaluation helps organizations avoid costly mistakes and ensure changes 
contribute positively to business objectives.

Risk management stands as a fundamental reason for implementing a CAB. By bringing 
together experts from different domains, organizations can better identify potential risks 
associated with proposed changes. This collective expertise helps anticipate and mitigate 
issues that might otherwise be overlooked, reducing the likelihood of service disruptions or 
security vulnerabilities.

Compliance requirements often necessitate formal change management processes, and 
the CAB serves as a key component in meeting these requirements. By maintaining detailed 
records of change evaluations, approvals, and implementations, organizations can demonstrate 
due diligence and compliance with various regulatory standards.

The CAB also serves as a vital feedback loop in the organization’s continuous improvement 
efforts. Through regular review of change outcomes and lessons learned, organizations can 
refine their processes and improve their ability to manage changes effectively over time.



15Data Governance Best Practices for Software Delivery

Conclusion
The fact that strong governance is essential to software delivery becomes clearer as 
organizations face increasing complexity and risk in their digital initiatives. By implementing 
effective governance frameworks, organizations position themselves for sustainable success, 
managing risks while enabling innovation and growth in an increasingly complex digital 
landscape.

Through thoughtful implementation of governance practices, organizations can achieve the 
delicate balance between control and agility, ensuring consistent quality while maintaining the 
speed necessary for competitive advantage in today’s market. This balanced approach enables 
sustainable growth while protecting organizational assets and stakeholder interests.



16Data Governance Best Practices for Software Delivery

The AI-Native Software Delivery Platform™

Follow us on

/harnessio www.harness.io

/harnessinc

Contact us on


